Автор
Hugo Kubinyi
  • 0 книг
Нет оценки

Hugo Kubinyi — библиография

  • BioNMR in Drug Research Hugo Kubinyi
    The vast progress made in the investigation of biomolecules using NMR has only recently been rewarded with the Nobel Prize for Kurt Wuthrich. Edited by a former coworker of Wuthrich, this book presents the theoretical background on NMR of biomolecules, plus the use of NMR techniques in determining the structures of proteins and nucleic acids. BioNMR spectroscopy offers a universal tool for examining the binding of an active substance to its target protein. Its use thereby benefits the rational development of drugs. This interaction can now be investigated in a hitherto unparalleled precision and displayed in 3D – an important prerequisite for the targeted development of new active substances. The latest methods for characterizing substance-receptor complexes are demonstrated backed by many case studies from pharmaceutical research. Thus it comes as no surprise that a large number of the authors are working for leading pharmaceutical companies. With its successful mixture of basic information and application strategies, coupled with many real-life examples, this is an invaluable guide for both NMR spectroscopists and pharmaceutical researchers.
  • Antitargets Hugo Kubinyi
    This practice-oriented handbook surveys current knowledge on the prediction and prevention of adverse drug reactions related to off-target activity of small molecule drugs. It is unique in collating the current approaches into a single source, and includes several highly instructive case studies that may be used as guidelines on how to improve drug development projects. With its large section on ADME-related effects, this is key knowledge for every drug developer.
  • Molecular Modeling Hugo Kubinyi
    Written by experienced experts in molecular modeling, this books describes the basics to the extent that is necessary if one wants to be able to reliably judge the results from molecular modeling calculations. Its main objective is the description of the various pitfalls to be avoided. Without unnecessary overhead it leads the reader from simple calculations on small molecules to the modeling of proteins and other relevant biomolecules. A textbook for beginners as well as an invaluable reference for all those dealing with molecular modeling in their daily work!
  • Drug Bioavailability Hugo Kubinyi
    The peroral application (swallowing) of a medicine means that the body must first resorb the active substance before it can begin to take effect. The efficacy of drug uptake depends on the one hand on the chemical characteristics of the active substance, above all on its solubility and membrane permeability. On the other hand, it is determined by the organism's ability to absorb pharmaceuticals by way of specific transport proteins or to excrete them. Since many pharmacologically active substances are poorly suited for oral intake, a decisive criterion for the efficacy of a medicine is its so-called bioavailability. Written by an international team from academia and the pharmaceutical industry, this book covers all aspects of the oral bioavailability of medicines. The focus is placed on methods for determining the parameters relevant to bioavailability. These range from modern physicochemical techniques via biological studies in vitro and in vivo right up to computer-aided predictions. The authors specifically address possibilities for optimizing bioavailability during the early screening stage for the active substance. Its clear structure and comprehensive coverage make this book equally suitable for researchers and lecturers in industry and teaching.
  • Molecular Drug Properties Hugo Kubinyi
    This first systematic overview for more than a decade is tailor-made for the medicinal chemist. All the chapters are written by experienced drug developers and include practical examples from real drug candidates. Following an introduction to global drug properties and their impact on drug research, screening and combinatorial chemistry libraries, this handbook demonstrates the best and fastest way to estimate those properties most relevant for the efficiency and pharmacokinetic performance of a drug molecule: lipophilicity,solubility, electronic properties and conformation.
  • Molecular Interaction Fields Hugo Kubinyi
    This unique reference source, edited by the world's most respected expert on molecular interaction field software, covers all relevant principles of the GRID force field and its applications in medicinal chemistry. Entire chapters on 3D-QSAR, pharmacophore searches, docking studies, metabolism predictions and protein selectivity studies, among others, offer a concise overview of this emerging field. As an added bonus, this handbook includes a CD-ROM with the latest commercial versions of the GRID program and related software.
  • Quantum Medicinal Chemistry Hugo Kubinyi
    Computational methods are transforming the work of chemical and pharmaceutical laboratories. Increasingly faster and more exact simulation algorithms have made quantum chemistry a valuable tool in the search for active substances. Written by a team of leading international quantum chemists, this book is aimed at both beginners as well as experienced users of quantum chemical methods. All commonly used quantum chemical methods are treated here, including Density Functional Theory, quantum and molecular mechanical approaches. Numerous examples illustrate the use of these methods for dealing with problems in pharmaceutical practice, whether the study of inhibitor binding, identifying the surface load of active substances or deriving molecular descriptors using quantum chemical tools. For anyone striving to stay ahead in this rapidly evolving field.
  • Proteomics in Drug Research Hugo Kubinyi
    From skillful handling of the wide range of technologies to successful applications in drug discovery – this handbook has all the information professional proteomics users need. Edited by experts working at one of the hot spots in European proteomic research, the numerous contributions by experts from the pharmaceutical industry and public proteomics consortia to provide the necessary perspective on current trends and developments in this exciting field. Following an introductory chapter, the book moves on to proteomic technologies, such as protein biochips, protein-protein interactions, and proteome analysis in situ. The section on applications includes bioinformatics, Alzheimer's disease, neuroproteomics, plasma and T-cell proteomics, differential phosphoproteome analysis and biomarkers, as well as pharmacogenomics. Invaluable reading for medicinal and pharmaceutical chemists, gene technologists, molecular biologists, and those working in the pharmaceutical industry.
  • Transporters as Drug Carriers Hugo Kubinyi
    This reference handbook is the first to provide a comprehensive overview, systematically characterizing all known transporters involved in drug elimination and resistance. Combining recent knowledge on all known classes of drug carriers, from microbes to man, it begins with a look at human and mammalian transporters. This is followed by microbial, fungal and parasitic transporters with special attention given to transport across those physiological barriers relevant for drug uptake, distribution and excretion. As a result, this key resource lays the foundations for understanding and investigating the molecular mechanisms for multidrug resistance in cancer cells, microbial resistance to antibiotics and pharmacokinetics in general. For anyone working with antibiotics and cancer chemotherapeutics, as well as being of prime interest to biochemists and biophysicists.
  • Handbook of Molecular Descriptors Hugo Kubinyi
    Quantitative studies on structure-activity and structure-property relationships are powerful tools in directed drug research. In recent years, various strategies have been developed to characterize and classify structural patterns by means of molecular descriptors. It has become possible not only to assess diversities or similarities of structure databases, but molecular descriptors also facilitate the identification of potential bioactive molecules from the rapidly increasing number of compound libraries. They even allow for a controlled de-novo design of new lead structures. This is the most comprehensive collection of molecular descriptors and presents a detailed review from the origins of this research field up to present day. This practically oriented reference book gives a thorough overview of the different molecular descriptors representations and their corresponding molecular descriptors. All descriptors are listed with their definition, symbols and labels, formulas, some numerical examples, data and molecular graphs, while numerous figures and tables aid comprehension of the definitions. Cross-references throughout, a list of acronyms and notations allow easy access to the information needed to solve a specific research problem. Examples of descriptor calculations along with tables of descriptor values for a set of selected reference compounds and an up-to-date reference list add to the practical value of the book, making it an invaluable guide for all those dealing with bioactive molecules as well as for researchers.
  • Structure-based Ligand Design Hugo Kubinyi
    Most drugs bind to a clearly defined macromolecular target that is complementary in terms of structure and chemistry. This observation is the basic paradigm of structure-based ligand design. Although this method first emerged in the 1980s, it has already become a powerful tool for pharmaceutical research. Much has been learned, however, since the first attempts to discover drugs on the basis of available biochemical and structural data. Nowadays, structure-based ligand design is an established method for creating drugs with new structural features, for modifying binding activities and pharmacokinetic properties, and for elucidating binding modes and structure-activity relationships. This volume presents the underlying principles of the approach and highlights real-life applications such as the discovery of HIV-protease inhibitors. It shows that structure-based ligand design has many advantages over other more traditional approaches to designing new drugs, providing it is employed properly and with a thorough knowledge of the pitfalls to avoid. The straightforward presentation and extensive list of references to the original literature as well as numerous color figures illustrating structural relationships make this volume an indispensable tool for every scientist working in the area of drug discovery.
  • Pharmacophores and Pharmacophore Searches Hugo Kubinyi
    This handbook is the first to address the practical aspects of this novel method. It provides a complete overview of the field and progresses from general considerations to real life scenarios in drug discovery research. Starting with an introductory historical overview, the authors move on to discuss ligand-based approaches, including 3D pharmacophores and 4D QSAR, as well as the concept and application of pseudoreceptors. The next section on structure-based approaches includes pharmcophores from ligand-protein complexes, FLIP and 3D protein-ligand binding interactions. The whole is rounded off with a complete section devoted to applications and examples, including modeling of ADME properties. With its critical evaluation of pharmacophore-based strategies, this book represents a valuable aid for project leaders and decision-makers in the pharmaceutical industry, as well as pharmacologists, and medicinal and chemists.
  • Chirality in Drug Research Hugo Kubinyi
    Divided into the three main sections of synthesis, analysis and drug development, this handbook covers all stages of the drug development process, including large-scale synthesis and purification of chirally pure pharmaceuticals. The two editors from academia and a major pharmaceutical company have assembled an experienced, international team who provide first-hand practical advice and report previously unpublished data. In the first section, the isolation of chiral drugs from natural sources, their production in enzymatic processes and the resolution of racemic mixtures in preparative chromatography are outlined in separate chapters. For the section on qualitative and quantitative analysis, enantioselective chromatographic methods are presented as well as optical methods and CE-MS, while the final section deals with the pharmacology, pharmacokinetics and metabolic aspects of chiral drugs, devoting whole chapters to stereoselective drug binding and modeling chiral drug-receptor interactions. With its unique industry-relevant aspects, this is a must for medicinal and pharmaceutical chemists.
  • Chemoinformatics in Drug Discovery Hugo Kubinyi
    This handbook provides the first-ever inside view of today's integrated approach to rational drug design. Chemoinformatics experts from large pharmaceutical companies, as well as from chemoinformatics service providers and from academia demonstrate what can be achieved today by harnessing the power of computational methods for the drug discovery process. With the user rather than the developer of chemoinformatics software in mind, this book describes the successful application of computational tools to real-life problems and presents solution strategies to commonly encountered problems. It shows how almost every step of the drug discovery pipeline can be optimized and accelerated by using chemoinformatics tools – from the management of compound databases to targeted combinatorial synthesis, virtual screening and efficient hit-to-lead transition. An invaluable resource for drug developers and medicinal chemists in academia and industry.
  • Evolutionary Algorithms in Molecular Design Hugo Kubinyi
    When trying to find new methods and problem-solving strategies for their research, scientists often turn to nature for inspiration. An excellent example of this is the application of Darwin's Theory of Evolution, particularly the notion of the 'survival of the fittest', in computer programs designed to search for optimal solutions to many kinds of problems. These 'evolutionary algorithms' start from a population of possible solutions to a given problem and, by applying evolutionary principles, evolve successive generations with improved characteristics until an optimal, or near-optimal, solution is obtained. This book highlights the versatility of evolutionary algorithms in areas of relevance to molecular design with a particular focus on drug design. The authors, all of whom are experts in their field, discuss the application of these computational methods to a wide range of research problems including conformational analysis, chemometrics and quantitative structure-activity relationships, de novo molecular design, chemical structure handling, combinatorial library design, and the study of protein folding. In addition, the use of evolutionary algorithms in the determination of structures by X-ray crystallography and NMR spectroscopy is also covered. These state-of-the-art reviews, together with a discussion of new techniques and future developments in the field, make this book a truly valuable and highly up-to-date resource for anyone engaged in the application or development of computer-assisted methods in scientific research.
  • Virtual Screening for Bioactive Molecules Hugo Kubinyi
    Recent progress in high-throughput screening, combinatorial chemistry and molecular biology has radically changed the approach to drug discovery in the pharmaceutical industry. New challenges in synthesis result in new analytical methods. At present, typically 100,000 to one million molecules have to be tested within a short period and, therefore, highly effective screening methods are necessary for today's researchers – preparing and characterizing one compound after another belongs to the past. Intelligent, computer-based search agents are needed and «virtual screening» provides solutions to many problems. Such screening comprises innovative computational techniques designed to turn raw data into valuable chemical information and to assist in extracting the relevant molecular features. This handbook is unique in bringing together the various efforts in the field of virtual screening to provide the necessary methodological framework for more effective research. Leading experts give a thorough introduction to the state of the art along with a critical assessment of both successful applications and drawbacks. The information collated here will be indispensable for experienced scientists, as well as novices, working in medicinal chemistry and related disciplines.
  • Mass Spectrometry in Medicinal Chemistry Hugo Kubinyi
    This first overview of mass spectrometry-based pharmaceutical analysis is the key to improved high-throughput drug screening, rational drug design and analysis of multiple ligand-target interactions. The ready reference opens with a general introduction to the use of mass spectrometry in pharmaceutical screening, followed by a detailed description of recently developed analytical systems for use in the pharmaceutical laboratory. Applications range from simple binding assays to complex screens of biological activity and systems containing multiple targets or ligands – all highly relevant techniques in the early stages in drug discovery, from target characterization to hit and lead finding.
  • Protein Crystallography in Drug Discovery Hugo Kubinyi
    The rational, structure-based approach has become standard in present-day drug design. As a consequence, the availability of high-resolution structures of target proteins is more often than not the basis for an entire drug development program. Protein structures suited for rational drug design are almost exclusively derived from crystallographic studies, and drug developers are relying heavily on the power of this method. Here, researchers from leading pharmaceutical companies present valuable first-hand information, much of it published for the first time. They discuss strategies to derive high-resolution structures for such important target protein classes as kinases or proteases, as well as selected examples of successful protein crystallographic studies. A special section on recent methodological developments, such as for high-throughput crystallography and microcrystallization, is also included. A valuable companion for crystallographers involved in protein structure determination as well as drug developers pursuing the structure-based approach for use in their daily work.
  • Molecular Biology in Medicinal Chemistry Hugo Kubinyi
    This readily comprehensible book explains the identification of molecular targets via cellular assays, reporter genes or transgenic models, as well as surveying recent advances in the synthesis, separation and analysis of drugs. A special section is devoted to molecular genetics methods. With its examination of these novel methods and generous practical advice, this is essential reading for all pharmaceutical chemists, molecular biologists and medical researchers using molecular methods to study drugs and their action.
  • Lipophilicity in Drug Action and Toxicology Hugo Kubinyi
    In keeping with the outstanding importance of lipophilicity in biosciences, this volume examines all its facets in more than twenty contributions from leading experts. It offers a thorough and highly topical survey of this rapidly developing field of research. Color plates demonstrating structural aspects, a vast number of references, and the straightforward presentation of the material make this volume a invaluable tool for all researchers involved in drug design or in the investigation of drug action.
Показать ещё