ОглавлениеНазадВпередНастройки
Добавить цитату

1.1. Строение и развитие нервной системы

Структурная организация нервной системы

По топографическому принципу нервная система подразделяется на центральную и периферическую. Периферическая система распределена по всему организму, центральная заключена в костные образования скелета и покрыта тремя мозговыми оболочками. К периферической системе относят ганглии (скопления нервных клеток за пределами центральной нервной системы) и нервы (собранные вместе аксоны – длинные отростки нейронов). Центральная нервная система состоит из нервных центров в виде скоплений нейронов и проводящих путей, соединяющих эти центры. Деление на центральную и периферическую части условно, поскольку нервная система в функциональном отношении едина.


Рис. 1. Центральная нервная система


ЦНС анатомически делится на спинной мозг и головной мозг (рис. 1). Спинной мозг располагается внутри костного канала – позвоночника – и состоит из морфологически однородных сегментов. Головной мозг заполняет черепную коробку и неоднороден по строению и функциям.

Внешний осмотр извлеченного из черепной коробки головного мозга не позволяет увидеть все его отделы. Их можно рассмотреть лишь на сагиттальном срезе, который делит мозг на две половины по средней линии. В самом общем виде головной мозг делится на ствол мозга и большие полушария (рис. 2). Ствол включает в себя следующие отделы: продолговатый мозг, Варолиев мост, мозжечок, средний мозг и промежуточный мозг. Большие полушария объединяются понятием «конечный мозг».


Рис. 2. Отделы головного мозга (сагиттальный срез).


Спинной мозг и все отделы головного мозга имеют полости, заполненные цереброспинальной жидкостью. Эта жидкость содержит биологически активные вещества и участвует в обменных процессах. Наполнение полостей этой жидкостью определяет величину внутримозгового давления.

Нервная ткань

Нервная ткань состоит из клеток двух типов: нервных и глиальных. Нервные клетки выполняют специфические для нервной системы функции, глиальные клетки (нейроглия) выполняют вспомогательные функции (опорная, трофическая и защитная), обеспечивая нормальное функционирование нейронов. При этом глиальных клеток примерно в 10 раз больше, чем нервных, и они заполняют пространство между нейронами. Глиальные клетки, в отличие от нейронов, способны делиться в течение всей жизни.

Строение нервной клетки

Нервная клетка состоит из сомы (тело клетки) и отходящих от нее отростков (рис. 3). Размер сомы у разных нейронов может отличаться в десятки раз: от 5 до 150 мкм. Сома заполнена цитоплазмой, в которой располагаются ядро клетки и органеллы. От тела отходят многочисленные короткие ветвящиеся отростки, которые называются дендриты, а также один длинный отросток, который называется аксон. Дендриты представляют собой короткие трубчатые выросты толщиной менее 1 нм. Диаметр аксона составляет у разных клеток от 1 до 6 мкм, а длина может достигать метра и более. На своем конце аксон делится на множество ответвлений – аксонных терминалей, каждая из которых заканчивается утолщением – синаптической бляшкой. Синаптической бляшкой аксонная терминаль контактирует с дендритом или сомой другого нейрона, образуя межклеточный контакт – синапс.

Тело клетки и ее отростки покрыты типичной для всех клеток организма оболочкой. Эта мембрана представляет собой липопротеидную пластинку толщиной 5–6 нм (рис. 4). Большая часть мембраны образована двумя слоями липидных молекул, которые гидрофильными концами направлены друг к другу, а гидрофобными обращены к внутренней и наружной ее поверхности. Липидные слои обеспечивают барьерную функцию мембраны – защищают клетку и поддерживают ее форму. В липидную пластинку встроены молекулы белков, которые выполняют транспортную и рецепторную функцию. Первая определяет состав веществ внутри клетки, вторая – специфическую чувствительность клетки к медиаторам, гормонам, антигенам и другим клеткам.


Рис. 3. Строение нервной клетки


Рис. 4. Липопротеидная мембрана нейрона.1 – двойной слой липидов, 2 – белковые молекулы


Нервные клетки классифицируются по характеру отростков на 4 типа (рис. 5): мультиполярные, биполярные, псевдоуниполярные и униполярные. Самыми распространенными являются мультиполярные клетки – типичные для ЦНС нейроны. Они состоят из тела, дендритного дерева и аксона. Биполярный нейрон имеет продолговатое тело, с одной стороны которого отходит дендрит, а с другого – аксон. Такие клетки встречаются лишь в сетчатке глаза, а также в слуховом и вестибулярном ганглиях. Псевдоуниполярные нейроны формируют спинальные ганглии (утолщения задних корешков спинномозговых нервов). От шарообразного тела такой клетки отходит один отросток, который Т-образно делится на две ветви: одна направляется к периферии, другая входит в спинной мозг. Такого же типа нейроны располагаются в чувствительных ядрах черепномозговых нервов.


Рис. 5. Типы нейронов


Униполярные клетки характерны тем, что от шарообразного тела отходит лишь один отросток с терминалями. Эти клетки типичны для нервной трубки зародыша. У взрослого человека они сохраняются только в мезэнцефалическом ядре тройничного нерва (обеспечивают проприоцептивную чувствительность жевательных мышц).

Серое и белое вещество нервной системы

Мембрана аксона, в отличие от сомы и дендритов, как правило, дополнительно покрыта миелиновой оболочкой, которую формируют особые глиальные клетки – олигодендроциты (Шванновские клетки) (рис. 6). Эта оболочка придает аксонам беловатый оттенок. Тела клеток и дендриты не имеют такой оболочки и окрашены в серый цвет (под цвет мембраны). Поэтому на срезах нервной ткани имеются участки, окрашенные в белый и серый цвета. На основании этого все вещество ЦНС делится на белое и серое. Серое вещество – это скопления тел нейронов с их дендритными деревьями. Они образуют нервные центры. Белое вещество – это скопления аксонов. Они образуют проводящие пути между нервными центрами. За пределами ЦНС проводящие пути представлены нервами. ЦНС взаимодействует с органами и тканями с помощью 31 пары спинномозговых нервов и 12 пар черепномозговых нервов.


Рис. 6. Формирование миелиновой оболочки


Все проводящие пути делятся на афферентные и эфферентные. Афферентные (приносящие) пути представлены волокнами, направляющимися с периферии в ЦНС, а также восходящими связями в пределах ЦНС. К эфферентным (выносящим) путям относятся нисходящие связи ЦНС и нервные волокна, направляющиеся из ЦНС к исполнительным органам.

Все структуры ЦНС имеют парную организацию, то есть представлены в обеих половинах мозга. При этом реализуется контралатеральный принцип иннервации: левая половина мозга связана с правой половиной тела, а правая половина мозга – с левой. Исключение составляют задний и продолговатый мозг. Здесь иннервация носит ипсилатеральный характер.

Филогенез нервной системы

Филогенез – это эволюционное развитие. У животных нервная система формируется с появлением многоклеточных организмов, когда возникает необходимость согласованного функционирования различных клеток. Фактически именно нервная система связывает все клетки организма в единое целое. Считается, что в ходе эволюции нервная система проходит 3 основных этапа своего развития: 1) диффузная; 2) узловая; 3) трубчатая нервная система (рис. 7).


Рис. 7. Эволюция нервной системы.

А – диффузная, Б – узловая, В – трубчатая


Итак, первым этапом эволюционного развития нервной системы является диффузная (сетчатая) нервная система. На этой стадии все нервные клетки однородны по своим функциям, их отростки не специализированы, а сама нервная система представляет собой однородную сеть. Одним из обладателей диффузной нервной системы является гидра (представитель кишечнополостных) (рис. 8).


Рис. 8. Пример диффузной нервной системы (гидра)


Функционирование такой нервной системы весьма примитивно: возбуждение, возникающее в локальном участке нервной сети, распространяется и охватывает всю сеть. В результате реакция на любое раздражение всегда одинакова – общее сокращение тела.

Обладателями узловой нервной системы являются высшие беспозвоночные. На этом этапе эволюционного развития нервной системы происходит специализация нервных клеток. Появляются чувствительные, вставочные и двигательные нейроны. Чувствительные (афферентные) нейроны получают сигналы об изменениях среды и передают эту информацию вставочным нейронам. Вставочные нейроны (интернейроны) обрабатывают полученную информацию, а результаты обработки передают двигательным нейронам. Двигательные (эфферентные) нейроны формируют и посылают команды исполнительным структурам, обеспечивающим реагирование на изменения среды.

Сегментарное строение тела беспозвоночных определяет сегментарное строение их нервной системы. Нервные клетки уже не рассеяны по всему организму, а собраны в парные скопления – ганглии. Ганглии связаны между собой и формируют вдоль тела две параллельные цепочки связей (рис. 9). Поперечные стволы связывают узлы одного сегмента, продольные стволы объединяют узлы соседних сегментов. Аксоны нейронов, выходя из ганглия, образуют нервы. Каждый сегмент тела содержит по 2 узла: один посылает нерв в левую половину тела, другой – в правую. Каждый ганглий направляет волокна в «свой» сегмент и в два соседних: вышележащий и нижележащий.


Рис. 9. Пример узловой нервной системы (высшие черви)


Появление в передней части тела органов чувств способствует большему развитию передних ганглиев, поскольку обработка сенсорной информации требует дополнительных нервных ресурсов. Наивысшего развития узловая нервная система достигает у насекомых (рис. 10).


Рис. 10. Нервная система насекомых


Наиболее совершенной по своей организации считается трубчатая нервная система. Ее обладателями являются хордовые. Возникновение трубчатой нервной системы связывают с появлением внутреннего скелета и, как следствие, нового двигательного аппарата. Развитие трубчатой нервной системы проходит в несколько этапов. Сначала появляется метамерная нервная трубка с сегментарными нервами (у ланцетника). Это так называемый туловищный мозг, который у позвоночных преобразуется в спинной мозг. Между его сегментами формируются собственные связи спинного мозга. Развитие органов чувств ведет к преимущественному развитию передней части трубки (цефализация) и появлению головного мозга. Этот процесс сопровождается формированием двусторонних связей между спинным и головным мозгом – спинной мозг становится проводником афферентных и эфферентных сигналов.

В головном мозге формируется 3 отдела: задний, средний и передний мозг. Задний мозг развивается под влиянием рецепторов акустики и статики, средний – под влиянием зрительных рецепторов, передний мозг формируется как субстрат анализа обонятельных сигналов. Задний мозг делится на продолговатый мозг и собственно задний мозг. Продолговатый мозг становится переходным отделом от спинного мозга к головному. Из заднего мозга развиваются мозжечок и Варолиев мост. Передний мозг делится на промежуточный и конечный. Конечный мозг увеличивается за счет роста и развития полушарий. Важным этапом развития полушарий является появление у рептилий новой коры, которая получает прогрессивное развитие у млекопитающих.

Таким образом, главное правило филогенеза центральной нервной системы можно сформулировать так: с каждым этапом эволюции возникают новые вышележащие нервные центры, функционально подчиняющие себе старые.

Онтогенез нервной системы

Онтогенез – это индивидуальное развитие. Онтогенез делится на пренатальный (внутриутробный) и постнатальный (послеродовой).

Зачатком нервной системы является мозговая трубка. Она формируется из соединительной ткани (рис. 11).


Рис. 11. Формирование мозговой трубки зародыша


Ее задняя часть образует зачаток спинного мозга, а передний конец путем перетяжек разделяется на 3 первичных мозговых пузыря: передний, средний и задний (рис. 12).


Рис. 12. Первичные мозговые пузыри


В последующем в переднем и заднем пузырях возникают новые перетяжки (рис. 13). В результате из переднего мозгового пузыря образуется два отдела: конечный мозг и промежуточный мозг, из среднего пузыря формируется средний мозг, а из заднего образуются задний мозг и добавочный мозг. Добавочный мозг развивается в продолговатый мозг.


Рис. 13. Дифференциация мозговых пузырей


Интенсивный прирост массы мозга начинается со второго месяца внутриутробного развития (рис. 14).

На пятом месяце начинается миелинизация аксонов, и появляются первые синапсы. Головной мозг новорожденного весит 300–400 граммов. К 8-му месяцу постнатального развития вес мозга удваивается, а к 4–5 годам – утраивается. Ствол мозга принимает окончательный вид к 5 годам. К этому же возрасту завершается миелинизация аксонов. Форма и размер борозд и извилин полушарий наиболее интенсивно меняется на первом году жизни, и этот процесс завершается примерно к 5 годам. Человек рождается с готовым набором нейронов, и в течение жизни их число может только снижаться. Масса и размер мозга ребенка увеличиваются благодаря увеличению числа отростков нейронов и их миелинизации, а также за счет развития нейроглии.


Рис. 14. Пренатальный онтогенез головного мозга


Словарь латинских терминов

Плоскости сечения:

сагиттальная (вдоль структуры параллельно средней линии) – sagittalis

фронтальная (поперек структуры) – frontalis

Пространственные обозначения:

правый – dexter

левый – sinister

верхний – superior

нижний – inferior

верхушечный – apicalis

лежащий в основании – basalis

спинной – dorsalis

брюшной – ventralis

средний- medialis

боковой – lateralis

передний – anterior

задний – posterior

головной – rostralis

хвостовой – caudalis

нерв – nervus

серое вещество – substantia grisea

белое вещество – substantia alba

ядро – nucleus

путь – tractus

кора – cortex

слой – stratum

борозда – sulcus

извилина – gyrus

Контрольные вопросы

1. Какие отделы ЦНС образуют ствол головного мозга?

2. Какие клетки формируют нервную ткань?

3. Что такое аксон?

4. Каковы морфологические классы нейронов?

5. Что входит в понятия «афферентный» и «эфферент ный»?

6. Что такое «контралатеральный принцип иннервации»?

7. Каковы этапы филогенеза нервной системы?

8. Что такое цефализация?

9. Из каких первичных мозговых пузырей формируется го ловной мозг?

10. Какие первичные мозговые пузыри делятся дополни тельными перетяжками?