Шрифт
Source Sans Pro
Размер шрифта
18
Цвет фона
4.2. Концепции развития литосферы
До настоящего времени нет единого представления о путях развития литосферы. Существует несколько тектонических концепций, каждая из которых хотя и основана на бесспорных фактах, однако отражает одну сторону тектонической истории Земли, не охватывая общего ее хода, и противоречит другим фактам, которые, в свою очередь, удачно объясняются другой теорией. Такое состояние тектонической проблемы объясняется тем, что геология и геофизика основывают свои выводы на исследовании материков, которые занимают всего 29,2 % Земли, а изучение океанского дна, т. е. большей части планеты, только еще началось.
Сторонники теории мобилизма (от лат. mobilis – подвижный) доказывают, что блоки литосферы движутся, и первостепенную роль отводят горизонтальным движениям. Основные идеи мобилизма были сформулированы А. Вегенером (1880–1930) как гипотеза дрейфа материков. Новые данные, полученные во второй половине XX в., позволили развить это направление до современной теории неомобилизма, объясняющей динамику процессов в земной коре дрейфом крупных литосферных плит.
Согласно гипотезе Вегенера, до верхнего палеозоя земная кора была собрана в материк Пангею, окруженный водами океана Панталласса (частью этого океана было море Тетис). В мезозое начались расколы и дрейф (плавание) отдельных ее глыб (материков). Материки, сложенные относительно легким веществом, которое Вегенер называл «сиаль» (силициум-алюминий), «плавали» по поверхности более тяжелого вещества – «сима» (силициум-магний). Первой отделилась и сместилась к западу Южная Америка, затем Африка, позднее Антарктида, Австралия и Северная Америка.
Разработанный позднее вариант гипотезы мобилизма допускает существование в прошлом двух гигантских праматериков – Лавразии и Гондваны. Из первой образовались Северная Америка и Азия, из второй – Южная Америка, Африка, Антарктида и Австралия, Аравия и Индостан.
Поначалу теория мобилизма покорила всех, ее приняли с восторгом, но через 2–3 десятилетия выяснилось, что физические свойства пород не допускают такого «плавания», и на теории дрейфа материков был поставлен жирный крест.
Вплоть до 1960-х гг. господствующей системой воззрений на динамику и развитие земной коры была теория фиксизма (от лат. flxus – неподвижный, неизменный), утверждавшая неизменное (фиксированное) положение континентов на поверхности Земли и ведущую роль вертикальных движений в развитии земной коры.
Лишь к 1960-м гг., когда была открыта общемировая система срединно-океанических хребтов, возникла практически новая теория – теория современной тектоники плит (новая глобальная тектоника), из гипотезы Вегенера принявшая только изменение взаимного расположения материков, в частности объяснение сходства очертаний континентов по обе стороны Атлантики.
Новая теория утверждает: в движении материков участвуют плиты, в состав которых входят и участки суши, и дно океана; границы между плитами могут проходить и по дну океана, и по суше, и по границам материков и океанов. В этом ее важнейшее отличие от гипотезы Вегенера, считавшего, что материки двигались по веществу, которым сложено океанское дно.
К крупным литосферным плитам относятся Евразиатская, Индийско-Австралийская, Тихоокеанская, Африканская, Северо-Американская, Южно-Американская, Антарктическая. Наряду с крупными плитами выделяются более мелкие, отвечающие отдельным глубоководным океаническим бассейнам (плита Кокос, Наска и др.), окраинным морям или частям раздробленных континентальных блоков. Движение литосферных плит происходит по астеносфере – слою верхней мантии, который подстилает литосферу и обладает вязкостью и пластичностью (рис. 11). В местах срединно-океанических хребтов литосферные плиты наращиваются за счет вещества, поднимающегося из недр, и раздвигаются по оси разломов или рифтов в стороны, образуя дивергентные границы. Этот процесс впервые описан американским геологом Г. Хессом и геофизиком Р. Дитцем, который дал ему название спрединга океанского дна (англ, spreading – расширение, распространение). Но поверхность земного шара не может увеличиваться. Возникновение новых участков земной коры по сторонам от срединно-океанических хребтов должно где-то компенсироваться ее исчезновением. Если считать, что литосферные плиты достаточно устойчивы, естественно предположить, что исчезновение коры, как и образование новой, должно происходить на границах сближающихся плит.
Рис. 11. Типы границ и схема расположения основных литосферных плит: границы плит: 1 — оси спрединга (наращивания коры), 2 — зоны субдукции (поглощения коры), 3 — скольжения (трансформные разломы), 4 — условные границы; малые плиты и микроплиты: 1 — Аравийская, 2 — Филиппинская, 3 — Кокос, 4 — Карибская, 5— Наска, 6 — Южно-Сандвичева, 7— Индокитайская, 8— Эгейская, 9 — Анатолийская, 10 — Хуан-де-Фука, 11 – Ривера, 12— Китайская, 13— Охотская
Взаимодействие литосферных плит при встречном движении (т. е. на конвергентных границах) порождает сложные и многообразные тектонические процессы, проникающие глубоко в мантию. Различают два главных вида конвергентного взаимодействия литосферных плит: субдукцию и коллизию.
Субдукция (лат. sub – под, ductio – ведение) развивается там, где на конвергентной границе сходятся континентальная и океанская литосферные плиты или океанская с океанской. При их встречном движении более тяжелая литосферная плита (всегда океанская) уходит под другую, а затем погружается в мантию. Субдукцию нельзя свести ни к «поддвигу», ни к «наддвигу» литосферных плит. Установлено, что субдукция развивается по-разному в зависимости от соотношения векторов движения плит, от возраста субдуцирующей литосферы и ряда других факторов.
Характер взаимодействующих участков литосферы определяет различия между двумя главными тектоническими типами зон субдукции: окраинно-материковым (андским) и океанским (марианским). Первый формируется там, где океанская плита субдуцирует под континент, второй – при взаимодействии двух участков океанской литосферы.
Строение и субдукционный режим окраинно-материковых зон разнообразны и зависят от многих условий. Типичный пример – Кордильеры Центральной Америки и Центральноамериканский желоб, Анды Южной Америки и идущая вдоль берега система желобов – Перуанский и Чилийский. В данном случае океанская плита погружается под материковый край плиты, образуя глубоководные желоба (характерны интенсивные вулканические и сейсмические процессы), край материковой плиты поднимается, в результате чего образуется мощная цепь гор вдоль материка.
При образовании зон субдукции океанского (марианского) типа более древняя (и поэтому более мощная и тяжелая) океанская литосфера субдуцирует под более молодую, на краю которой образуется островная дуга, другой край уходит под него, здесь уровень верхней поверхности литосферы понижается, формируется глубоководный океанический желоб (рис. 12). Таковы Алеутские острова и обрамляющий их Алеутский желоб, Курильские острова и Курило-Камчатский желоб, Марианские острова и Марианский желоб в Тихом океане, Антильские острова и желоб Пуэрто-Рико, Южные Сандвичевы острова и Южно-Сандвичев желоб – в Атлантическом.
Рис. 12. Схема взаимодействия литосферных плит (по М.В. Муратову, В.М. Цейслеру с изменениями):
1 — водная оболочка; 2–5 — литосфера (2–4 — земная кора: 2 — осадочный слой, 3 — гранитно-метаморфический слой, 4 — гранулитобазитовый слой); 5–6 — верхняя мантия (5 – надастеносферный слой, 6 — астеносфера); 7— границы раздела слоев; 8 — разломы; 9 — вулканы; 10 — направления перемещений литосферных плит
Движение плит относительно друг друга сопровождается значительными механическими напряжениями, поэтому во всех этих местах наблюдаются высокая сейсмичность, интенсивная вулканическая деятельность. Очаги землетрясений располагаются в основном на поверхности соприкосновения двух плит и могут быть на большой глубине. Край плиты, ушедшей вглубь, погружается в мантию, где постепенно превращается в мантийное вещество. Погружающаяся плита подвергается разогреву, из нее выплавляется магма, которая изливается в вулканах островных дуг. Если зоне спрединга соответствуют рифтовые долины Мирового океана, то зоне субдукции отвечают системы «островная дуга – глубоководный желоб» или «активная окраина континента – глубоководный желоб».
Гораздо реже и на короткое время при конвергенции возникают условия для надвигания на край континентальной плиты фрагментов океанской: происходит ее обдукция.
Во всех рассмотренных случаях субдуцирует литосфера океанского типа. Иначе протекает процесс там, где к конвергентной границе с обеих сторон подходит континентальная литосфера. Она включает в себя мощную и низкоплотностную земную кору. Данный процесс носит название «коллизия».
Коллизия, т. е. столкновение литосферных плит, развивается там, где континентальная литосферная плита сходится с континентальной: их дальнейшее встречное движение затруднено, оно компенсируется деформацией литосферы, ее утолщением и «скучиванием» в складчатых горных сооружениях. Наблюдается вулканизм, но меньше, чем в первых двух случаях, так как земная кора в таких местах очень мощная. Так образовался Альпийско-Гималайский горный пояс, протянувшийся от Северной Африки и западной оконечности Европы через всю Евразию до Индокитая; в его состав входят самые высокие горы на Земле, по всему его протяжению наблюдается высокая сейсмичность, на западе пояса есть действующие вулканы.
Согласно прогнозу, при сохранении общего направления движения литосферных плит значительно расширятся Атлантический океан, Восточно-Африканские рифты (они заполнятся водами МО) и Красное море, которое напрямую соединит Средиземное море с Индийским океаном.
Основные положения новой глобальной тектоники:
1. Литосфера Земли, включающая кору и самую верхнюю часть мантии, подстилается более пластичной, менее вязкой оболочкой – астеносферой.
2. Литосфера разделена на ограниченное число крупных (несколько тысяч километров в поперечнике) и среднего размера (около 1000 км) относительно жестких и монолитных плит.
3. Литосферные плиты перемещаются друг относительно друга в горизонтальном направлении; характер этих перемещений может быть трояким:
✓ раздвиг (спрединг) с заполнением образующегося зияния новой корой океанического типа;
✓ поддвиг (субдукция) океанской плиты под континентальную или океанскую же с возникновением над зоной субдукции вулканической дуги или окраинно-континентального вулкано-плутонического пояса;
✓ скольжение одной плиты относительно другой по вертикальной плоскости так называемых трансформных разломов, поперечных к осям срединных хребтов.
4. Перемещение литосферных плит по поверхности астеносферы подчиняется теореме Эйлера, гласящей, что перемещение сопряженных точек на сфере происходит вдоль окружностей, проведенных относительно оси, проходящей через центр Земли; места выхода оси на поверхность получили название полюсов вращения или раскрытия.
5. В масштабе планеты в целом спрединг автоматически компенсируется субдукцией: сколько за данный промежуток времени рождается новой океанической коры, столько же более древней океанической коры поглощается в зонах субдукции, благодаря чему объем Земли остается неизменным.
6. Перемещение литосферных плит происходит под действием конвективных течений в мантии, включая астеносферу. Под осями раздвига срединных хребтов образуются восходящие течения; они превращаются в горизонтальные на периферии хребтов и в нисходящие в зонах субдукции на окраинах океанов. Сама конвекция имеет своей причиной накопление тепла в недрах Земли вследствие его выделения при распаде естественно-радиоактивных элементов и изотопов.
Геодинамика Земли развивается быстрыми темпами, возникают принципиально новые идеи, разрабатываются новые подходы, сменяются парадигмы. Новые геологические материалы о наличии вертикальных токов (струй) расплавленного вещества, поднимающихся от границ самого ядра и мантии к земной поверхности, легли в основу построения новой, «плюмовой» тектоники, или гипотезы плюмов. Так, используя новые данные сейсмической томографии, детально рисующие трехмерное строение глубоких недр Земли, японские исследователи С. Маруяма, М. Кумазава, С. Каваками и другие выделяют три главные зоны или области в разрезе Земли (рис. 13): кору и верхнюю мантию (тектоносферу); нижнюю мантию (плюмтектонику); ядро Земли (тектонику роста или тектонику ядра).
Рис. 13. Схема глубинного строения Земли по С. Маруяме (стрелками показано движение вещества)
Указанные исследователи, а также русские специалисты (Н.Л. Добрецов, М.И. Кузьмин, А.Г. Кирдяшкин, Ю.М. Пущаровский, В.Е. Хайн и др.) ведущее значение придают погружению холодных литосферных пластин в зонах субдукции, что рассматривается как естественное следствие существования Земли в холодном космическом пространстве и, очевидно, ее векового охлаждения. Холодные пластины погружаются первоначально до границы верхней и нижней мантии примерно на 670 км и здесь какое-то время (100–400 млн лет) находятся в состоянии относительного покоя, пока не наступает катастрофический гравитационный коллапс, вызывающий погружение пластины уже до границы мантии и ядра. Этому коллапсу способствует эндотермическая природа фазового перехода на границе 670 км. Наступающее вследствие коллапса взаимодействие холодной пластины с внешним ядром имеет два важных следствия. С одной стороны, оно вызывает охлаждение внешнего ядра и порождает в нем нисходящий вихрь, уносящий железо и никель во внутреннее ядро, которое благодаря этому испытывает разрастание. С другой стороны, оно провоцирует возникновение компенсационного восходящего течения на границе «ядро – мантия», которое порождает плюм, достигающий границы нижней и верхней мантии и здесь, так же как и холодный плюм, испытывающий задержку, а затем прорывающийся вверх. В современной картине Земли С. Маруяма и его коллеги различают один крупный нисходящий холодный суперплюм под Центральной Азией и два восходящих суперплюма – под южным Тихим океаном и под Африкой. Таким образом, в нижней мантии, а фактически и в переходной зоне, к верхней мантии навстречу друг другу на определенном расстоянии движутся колонны охлажденного и разогретого вещества, т. е. конвекция реализуется в форме адвекции.
Некоторые приверженцы плюмовой гипотезы склонны даже считать, что именно этот энергообмен лежит в основе всех физико-химических преобразований и геологических процессов в теле планеты.
В последнее время многие исследователи все больше стали склоняться к мысли, что неравномерным распределением эндогенной энергии Земли, как и периодизацией некоторых экзогенных процессов, управляют внешние по отношению к планете (космические) факторы. Из них наиболее действенной силой, непосредственно влияющей на геодинамическое развитие и преобразование вещества Земли, по-видимому, служит эффект гравитационного воздействия Солнца, Луны и других планет, с учетом инерционных сил вращения Земли вокруг своей оси и ее движения по орбите. Основанная на этом постулате концепция центробежно-планетарных мельниц позволяет, во-первых, дать логическое объяснение механизму дрейфа материков, во-вторых, определить главные направления подлитосферных потоков.