Автор
Илья Пригожин, Изабелла Стенгерс
  • 12 книг
  • 1 подписчик
  • 48 читателей
3.9
44оценки
Рейтинг автора складывается из оценок его книг. На графике показано соотношение положительных, нейтральных и негативных оценок.
3.9
44оценки
5 11
4 20
3 11
2 2
1 0
без
оценки
12

Илья Пригожин, Изабелла Стенгерс — об авторе

Я — Илья Пригожин, Изабелла Стенгерс или представляю его интересы

Личные страницы авторов

КнигиСмотреть 12

РецензииСмотреть 3

23 февраля 2013 г. 17:09

2K

5

Нельзя сказать, что все очень просто читается. Приходится пропускать формулы. Однако!!! Затронуты основные вопросы бытия и намечаются ответы. Невероятное наслаждение чтением.

ProBCE бесТОЛКОВЫЙ СЛОВАРЬ

16 сентября 2022 г. 18:35

558

0 Порядок через флуктуации

Нелегкая для обывательского понимания книга, в которой автор с точки зрения физики, математики, молекулярной биологии рассказывает про детерминизм, хаос, упорядоченность, случайность, равновесие, вероятности, бифуркации, флуктуации, обратимость, самоорганизацию, энтропию, и прочие диссипативные структуры с гистерезисами.
Целью, как я понял, было показать два факта: что "внезапное" возникновение чего-то(например жизни) - это не чудо, а объяснимый процесс, и что время необратимо.
Автор цитирует множество ученых, философов, сыплет формулами, непривычными терминами. Читать сложно, как и сделать какие-то выводы(проверить верность утверждений, расчёты в формулах), не имея специального образования.

несколько цитат

Иное значение приобретает (и приводит к иным выводам) биология, если к ней подходить с позиций физики неравновесных процессов. Как теперь известно, и биосфера в целом, и ее различные компоненты, живые или неживые, существуют в сильно неравновесных условиях. В этом смысле жизнь, заведомо укладывающаяся в рамки естественного порядка, предстает перед нами как высшее проявление происходящих в природе процессов самоорганизации.
Мы намереваемся пойти еще дальше и утверждаем, что, коль скоро условия для самоорганизации выполнены, жизнь становится столь же предсказуемой, как неустойчивость Бенара или падение свободно брошенного камня.

Раннее зарождение жизни, несомненно, является аргументом в пользу идеи о том, что жизнь — результат спонтанной самоорганизации, происходящей при благоприятных условиях. Нельзя не признать, однако, что до количественной теории нам еще очень далеко.

Возвращаясь к нашему пониманию жизни и эволюции, следует заметить, что оно стало существенно более глубоким, и это позволяет нам избежать опасностей, с которыми сопряжена любая попытка полностью опровергнуть редукционизм. Сильно неравновесная система может быть названа организованной не потому, что в ней реализуется план, чуждый активности на элементарном уровне или выходящий за рамки первичных проявлений активности, а по противоположной причине: усиление микроскопической флуктуации, происшедшей в «нужный момент», приводит к преимущественному выбору одного пути реакции из ряда априори одинаково возможных. Следовательно, при определенных условиях роль того или иного индивидуального режима становится решающей. Обобщая, можно утверждать, что поведение «в среднем» не может доминировать над составляющими его элементарными процессами. В сильно неравновесных условиях процессы самоорганизации соответствуют тонкому взаимодействию между случайностью и необходимостью, флуктуациями и детерминистическими законами. Мы считаем, что вблизи бифуркаций основную роль играют флуктуации или случайные элементы, тогда как в интервалах между бифуркациями доминируют детерминистические аспекты.

Реальный урок, который мы можем извлечь из принципа дополнительности (урок, важный и для других областей знания), состоит в констатации богатства и разнообразия реальности, превосходящей изобразительные возможности любого отдельно взятого языка, любой отдельно взятой логической структуры. Каждый язык способен выразить лишь какую-то часть реальности. Например, ни одно направление в исполнительском искусстве и музыкальной композиции от Баха до Шёнберга не исчерпывает всей музыки.

Мы стремились всячески подчеркнуть важность введения операторов, ибо они позволили нам достаточно убедительно показать: реальность, изучаемая физикой, есть не что иное, как конструкция нашего разума, а не только данность. Необходимо проводить различие между абстрактным понятием координаты или импульса, представляемых математически операторами, и их численной реализацией, достигаемой посредством эксперимента. Одна из причин противопоставления «двух культур», по-видимому, кроется в убеждении, что литература соответствует некоторой концептуализации реальности, чему-то вымышленному, в то время как наука выражает объективную реальность. Квантовая механика учит нас, что ситуация не столь проста. Существенный элемент концептуализации подразумевается на всех уровнях реальности.

Кратко отличительную особенность марковских процессов можно сформулировать следующим образом: вероятности переходов однозначно определены и не зависят от предыстории системы.

Что означает переход от порядка к хаосу? В предложенной Эренфестами модели урн ответ ясен: система эволюционирует до тех пор, пока распределение шаров не становится равномерным. В других случаях ситуация не столь проста. Мы можем воспользоваться численным моделированием и начать со случайного распределения взаимодействующих частиц. Со временем (на какое-то мгновение) может образоваться правильная решетка. Происходит ли в этом случае переход от порядка к хаосу? Ответ на этот вопрос далеко не очевиден. Для того чтобы понять порядок и хаос, нам необходимо прежде всего определить те объекты, к которым мы применяем эти понятия. Переход от динамики к термодинамике, как показал Больцман, совершается особенно легко в разреженных газах. Но в плотных системах, где молекулы взаимодействуют между собой, переход этот не столь очевиден.

Именно из-за трудностей, возникающих при рассмотрении плотных систем с взаимодействующими частицами, яркая пионерская теория Больцмана осталась незавершенной.

Мы уже неоднократно отмечали расплывчатость и. неоднозначность понятий порядка и хаоса. Постоянство функции HG свидетельствует о том, что в рамках динамической теории не существует никакого изменения порядка! «Информация», выражаемая функцией HG, остается постоянной. Сохранение информации можно понимать следующим образом: столкновения порождают корреляции. В результате столкновений скорости рандомизируются, становятся случайными, что позволяет нам описывать весь процесс как переход от порядка к хаосу. Вместе с тем появление корреляции в результате столкновений свидетельствует об обратном процессе: о переходе от хаоса к порядку! Теория Гиббса показывает, что оба процесса — прямой и обратный — в точности компенсируют друг друга.

К счастью, существует другая, объективная интерпретация: вероятность возникает в результате альтернативного описания динамики, нелокального описания, возможного лишь для сильно неустойчивых динамических систем.

При таком подходе вероятность становится объективным свойством, порождаемым, так сказать, внутри динамики и отражающим фундаментальную структуру динамической системы. Мы уже подчеркивали важность основного открытия Больцмана — установления связи между энтропией и вероятностью. Для внутренне случайных систем понятие вероятности обретает динамический смысл. Теперь нам необходимо совершить переход от внутренне случайных систем к необратимым системам. Как мы уже знаем, неустойчивые динамические процессы порождают по две цепи Маркова.

Связав энтропию с динамической системой, мы тем самым возвращаемся к концепции Больцмана: вероятность достигает максимума в состоянии равновесия. Структурные единицы, которые мы используем при описании термодинамической эволюции, в состоянии равновесия ведут себя хаотически. В отличие от этого в слабо неравновесных условиях возникают корреляции и когерентность.

Здесь мы подходим к одному из наших главных выводов: на всех уровнях, будь то уровень макроскопической физики, уровень флуктуаций или микроскопический уровень, источником порядка является неравновесность. Неравновесность есть то, что порождает «порядок из хаоса». Но, как мы уже упоминали, понятие порядка (или беспорядка) сложнее, чем можно было бы думать. Лишь в предельных случаях, например в разреженных газах, оно обретает простой смысл в соответствии с пионерскими трудами Больцмана.

Сравним еще раз динамическое описание физического мира с помощью сил и полей и термодинамическое описание. Как уже упоминалось, нетрудно составить программы численных экспериментов, в которых взаимодействующие частицы, первоначально распределенные случайным образом, в некоторый момент времени располагаются в узлах правильной решетки. Динамическая интерпретация этого явления гласит: возникновение порядка обусловлено игрой сил взаимодействия между частицами. Термодинамическая интерпретация утверждает иное: наблюдается общая тенденция к установлению хаоса (система изолирована), но хаоса, проявляющегося в совершенно других структурных единицах (в рассматриваемой модели это — коллективные моды, охватывающие большое число частиц). В этой связи, по-видимому, уместно напомнить неологизм, введенный нами в гл. 6 для обозначения новых структурных единиц, которые ведут себя некогерентно, несогласованно в состоянии равновесия системы; мы назвали их «гипнонами», или «сомнамбулами», поскольку в состоянии равновесия они движутся как во сне, «не замечая» друг друга. Каждый из гипнонов может обладать сколь угодно сложной структурой (достаточно вспомнить о том, насколько сложны молекулы ферментов), но в состоянии равновесия их сложность обращена «внутрь» и никак не проявляется «снаружи». Например, внутри молекулы существует интенсивное электрическое поле, но в разреженном газе этим полем можно пренебречь: оно никак не сказывается на поведении других молекул.

Является ли природа внутренне случайной? Не является ли упорядоченное поведение лишь преходящим результатом случайных столкновений атомов и их неустойчивых соединении?

Мы искали общие, всеобъемлющие схемы, которые допускали бы описание на языке вечных законов, но обнаружили время, события, частицы, претерпевающие различные превращения. Занимаясь поиском симметрии, мы с удивлением обнаружили на всех уровнях — от элементарных частиц до биологии и экологии — процессы, сопровождающиеся нарушением симметрии. Мы описали в нашей книге столкновение между динамикой с присущей ей симметрией во времени и термодинамикой, для которой характерна односторонняя направленность времени.

На наших глазах возникает новое единство: необратимость есть источник порядка на всех уровнях. Необратимость есть тот механизм, который создает порядок из хаоса. Как могли столь радикальные изменения в наших взглядах на природу произойти за сравнительно короткое время — на протяжении последних десятилетий? Мы убеждены, что столь быстрая и глубокая перестройка наших взглядов на мир свидетельствует о значительной роли, отводимой в нашем восприятии природы построениям нашего разума.

Теперь мы лучше понимаем, почему время невозможно «повернуть назад».
Бесконечно высокий энтропийный барьер отделяет разрешенные начальные состояния от запрещенных. Барьер этот никогда не будет преодолен техническим прогрессом: он бесконечно высок. Нам не остается ничего другого, как расстаться с мечтой о машине времени, которая перенесет нас в прошлое. Энтропийный барьер несколько напоминает другой барьер: существование предельной скорости распространения сигналов скорости света. Технический прогресс может приблизить нас к скорости света, но, согласно современным физическим представлениям, мы никогда не сможем превзойти ее.

Хаос перестал быть синонимом отсутствия порядка и обрел структуру, подобно тому как перестал быть синонимом «ничего» физический вакуум.

Аналогичная метаморфоза произошла и с понятием «время». Переоткрытие времени в современной физике, низведенного в классической механике до роли вспомогательного параметра, «нумерующего» последовательность событий, — главная тема книги И. Пригожина и И. Стенгерс. Ей вторят многочисленные вариации и побочные темы: структура и направленность времени, возникновение и развитие необратимости в различных явлениях природы, роль необратимости в процессах самоорганизации, роль наблюдателя, не только фиксирующего, но и активно изменяющего ход явлений на макроскопическом уровне, и т.д.

Разумеется, все эти (и многие другие) важные проблемы не впервые привлекают внимание физиков. Исследования в соответствующих направлениях проводятся давно, начиная с классических работ Больцмана и Гиббса; ныне же они развернулись широким фронтом.

Одно время бытовало мнение, что существует явное противоречие между теорией Дарвина и вторым законов термодинамики. Действительно, но Дарвину, в процессе биологического развития происходит усложнение структур и степень упорядоченности возрастает. Согласно же второму закону термодинамики, в любой замкнутой системе в процессе эволюции степень хаотичности (энтропия) возрастает. Это кажущееся противоречие отпало с осознанием того факта, что существуют два принципиально различных (указанные выше) процесса эволюции: процессы в замкнутых системах ведут к тепловому равновесию (физическому хаосу, в нашей терминологии), а процессы в открытых системах могут быть процессами самоорганизации. При этом возникает необходимость введения количественной характеристики степени упорядоченности различных состояний открытых систем. Это необходимо для сравнительной оценки степени самоорганизованности — упорядоченности различных состояний, выбора пути наиболее эффективной самоорганизации.

В физике понятия «хаос», «хаотическое движение» являются фундаментальными, и вместе с тем недостаточно четко определенными.

Действительно, хаотическим является движение атомов в любой системе, находящейся в состоянии теплового равновесия. Хаотическим является и движение броуновских частиц, т.е. малых, но макроскопических тел. При этом понятия теплового и хаотического движения оказываются синонимами. Так мы говорим о хаотических — тепловых — колебаниях заряда и тока в электрической цепи, находящейся в термостате, о хаотическом — тепловом движении электромагнитного излучения и т.д.

Во всех этих случаях речь идет о движении в состоянии теплового равновесия. Однако понятия «хаос», «хаотическое движение» широко используются для характеристики состояний, которые далеки от теплового равновесия, например для описания турбулентного движения.

На вопрос «Что такое турбулентность?» ответить не просто. Разноречивы, в частности, мнения о том, является ли турбулентное движение более хаотичным (менее упорядоченным), чем ламинарное. Многим представляется почти очевидным, что переход от ламинарного течения к турбулентному есть переход от упорядоченного движения к хаотическому.

«Долгое время турбулентность отождествлялась с хаосом или шумом. Сегодня мы знаем, что это не так. Хотя в макроскопическом масштабе турбулентное течение кажется совершенно беспорядочным, или хаотическим, в микроскопическом масштабе оно высоко организованно.

свернуть

В общем, слишком сложно для обывателя. Не совсем понятно, какой вывод должен сделать читатель после прочтения.

Кураторы1

Поделитесь