
Автор
Джуда Перл
Judea Pearl
4.0
4.0
17оценок
Рейтинг автора складывается из оценок его книг. На графике показано соотношение положительных, нейтральных и негативных оценок.
5 | 7 | |
4 | 6 | |
3 | 3 | |
2 | 1 | |
1 | 0 | |
без оценки |
7 |
17оценок
Лучшие книги Джуды Перла
- 2 произведения
- 10 изданий на 3 языках
По популярности
-
Дана Маккензи, Джуда Перл Думай "почему?". Причина и ...
ISBN: 978-5-17-146449-3 Год издания: 2022 Издательство: АСТ Язык: Русский Аннотация
Удостоенный премии Алана Тьюринга 2011 года по информатике, ученый и статистик показывает, как понимание причинно-следственных связей произвело революцию в науке и совершило прорыв в работе над искусственным интеллектом.
"Корреляция не является причинно-следственной связью" — эта мантра, скандируемая учеными более века, привела к условному запрету на разговоры о причинно-следственных связях. Сегодня это табу отменено. Причинная революция, открытая Джудией Перлом и его коллегами, пережила столетие путаницы и поставила каузальность — изучение причин и следствий — на твердую научную основу.
Работа Перла позволяет нам не только узнать, является
ли одно причиной другого, она позволяет исследовать реальность, которая уже существует, и реальности, которые
могли бы существовать. Она демонстрирует суть человеческой мысли и дает ключ к искусственному интеллекту. -
Джуда Перл, Madelyn Glymour, Nicholas P. Jewell Causal Inference in Statist...
ISBN: 978-1-119-18684-7 Год издания: 2016 Издательство: Wiley & Sons Язык: Английский Аннотация
Causality is central to the understanding and use of data. Without an understanding of cause–effect relationships, we cannot use data to answer questions as basic as "Does this treatment harm or help patients?" But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data.
Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest.
This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding. -
Джуда Перл Causality : Models, Reasoni...
ISBN: 0521773628, 978-0521773621 Год издания: 2000 Издательство: Cambridge University Press Язык: Английский Аннотация
Written by one of the pre-eminent researchers in the field, this book provides a comprehensive exposition of modern analysis of causation. It shows how causality has grown from a nebulous concept into a mathematical theory with significant applications in the fields of statistics, artificial intelligence, philosophy, cognitive science, and the health and social sciences. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artifical intelligence, business, epidemiology, social science and economics. Students in these areas will find natural models, simple identification procedures, and precise mathematical definitions of causal concepts that traditional texts have tended to evade or make unduly complicated. This book will be of interest to professionals and students in a wide variety of fields. Anyone who wishes to elucidate meaningful relationships from data, predict effects of actions and policies, assess explanations of reported events, or form theories of causal understanding and causal speech will find this book stimulating and invaluable. Professor of Computer Science at the UCLA, Judea Pearl is the winner of the 2008 Benjamin Franklin Award in Computers and Cognitive Science. -
Джуда Перл Probabilistic Reasoning in ...
ISBN: 1558604790, 9781558604797 Год издания: 1988 Издательство: Morgan Kaufmann Язык: Английский Аннотация
Probabilistic Reasoning in Intelligent Systems is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic.
The author distinguishes syntactic and semantic approaches to uncertainty--and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition--in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information.
Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.